
Replica symmetry breaking in the random replicant model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 4697

(http://iopscience.iop.org/0305-4470/28/17/006)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 00:20

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A: Math. Gen. 28 (1995) 4697-4708. printed in the UK 

Replica symmetry breaking in the random replicant model 
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Abstract We study the statistical mechanics of a model describing lhe coevolution of species 
interacting in a random way. We find lhat at high competition, replica symmetry is broken. We 
solve the model in the approximation of one-step replica symmetry breaking and we compare 
ow findings with accurate numerical simulations. 

1. Introduction 

Replicant models are used to study the coevolution of sets of interacting species able to 
reproduce themselves: they have a huge number of applications in biological problems 
[ 1-31. Furthermore, the processes that lead to the selection of a certain number of species 
through the interactions have been applied to computer optimization programs [4]. 

Until now, many problems (e.g. how t o  find the number of surviving species, to estimate 
the number of equilibrium configurations, or to study their stability) have been widely 
treated for several types of deterministic interactions [Z, 31. In this paper we study a non- 
deterministic evolution: we consider a system of replicants which evolve with random 
interactions. 

The model introduced by Diederich and Opper [5] is defined as follows. Given N 
species, let x j lN  be the concentration of the ith family in the system. The real variables 
[xi E R, i = 1, . . . , N) are then subject to the constraints 

N 

ZX; = N X ; 2 O V i = I 1 .  .... N. 
;=I 

The interactions between different species are described through a fitness function F,[m] 
that must be maximized at equilibrium. Typically, FJ is chosen as a quadratic function of the 
concentrations; this is equivalent to considering only pair interactions between the species. 

Taking into account the reproduction of the species, the evolution equations are 

(1.2) 
hi 
dt - = x j ( F ~ , i  - (FJ)) i = 1, ..., N -  

where the derivative 
a 

axi FJJ := -FJ(Xl, .. . , X N )  (1.3) 
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4698 P Biscari and G Parisi 

measures how much the configuration ( X I ,  . . . , X N )  enhances the ith species, and 

denotes the average growth of the system that must be subtracted from F1.i in order to keep 
the normalization (1.1). 

In the random replicant model, the fitness funtional FJ introduces random interactions 
between each couple of species: 

where the parameters { J i j }  are chosen at random from the Gaussian probability distribution 

as in the Sherrington-Kirkpatrick (sK) model of spin glasses [6,7]. Note that the introduction 
of a symmetric function in which Jij = Jji Vi f j is a very strong approximation from the 
biological point of view, since in many cases the interaction between the species is by no 
means symmetric. 

The control parameter a has the aim of limiting the growth and the supremacy of one 
single species: for large values of a,  the growth of all the species is strongly limited by 
the factor ax;; in that case, the random interactions become negligible and the equilibrium 
configuration is 

xp  2 1 Vi = 1,. . . , N (a > J )  (1.7) 

i.e. almost independent of the interactions between the species. Instead, for small values 
of a ,  the pair interactions play a central role and a few species prevail among the others. 
Analytically, this model differs from the SK spin glass in that we impose the constraint 
(1.1): the spins are then allowed to take any real value, but the total magnetization is fixed. 

In section 2 we show how it is possible to solve the random replicant model within 
the replica formalism. In sections 3 and 4 we analyse the replica symmetric solution and 
its stability, and in section 5 we perform the first step of the hierarchical replica symmetry 
breaking. The biological applications of the results are found in the limit 7' -+ 0" because 
the fitness function F j  is, a minus sign apart, the low temperature limit of the free energy. 

The study of the stability of the replica symmetric solution will show that, at zero 
temperature, the replicant model exhibits a phase transition to a glassy phase when a crosses 
a certain value a,. The replica symmetry breaking which occurs in the glassy phase (a c (E) 

implies the breakdown of the ergodicity of the system: when a becomes small, the evolution 
of the system depends strongly on the initial conditions and, in general, we will not be able 
to make any precise prediction on the equilibrium state of the system. 

From the biological point of view, the glassy phase is the unstable phase: in the high 
a phase a single equilibrium state exists and the system is able to recover its equilibrium 
configuration after any external change of the concentrations of its elements; in contrast, in 
the glassy phase, the same perturbation can drastically change the final configuration of the 
system if it is  led to a different ergodic region of the phase space. Here, however, we study 
only the properties of the statics associated to Hamiltonian (1.5) and we do not consider the 
dynamics of a system leading to this equilibrium distribution. 
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2. The random replicant model: analytical solution 

Now we derive the expression for the quenched free-energy density of the random replicant 
model. In this and the next section we closely follow [5].  The evolution of the system is 
ruled by the Hamiltonian (1.5). Averaging over all the possible choices of the ( J i j ] ,  the 
quenched free energy of the system is given by 

To compute (2.1) we use the replica method [7-12], introducing a set of Lagrange multipliers 
(A,, 1y = 1,. . , , n ]  which ensure the normalization condition (1.1) in each of the n replicas. 
With standard calculations [13], we arrive at the following expression for f: 

1 1 1 
n+O+ Q,A n .  n 

- ,Sf = lim max Q:y + -CAa + -lnTr,expL(Q, A, 3c) 

where 

Q and X are, respectively, an n x n matrix and an n-dimensional vector; ( x u ,  E = 1, . . . , n )  
is a new set of real positive variables, and Tr, denotes the integral over all possible values 
of the x,'s. 

From (2.2) and (2.3) we find that the stationary equations for f are 

The remaining sections are devoted to the study of the solutions of these stationary 
conditions. 

3. Replica symmetric solution 

Both the freeenergy density and the above stationay equations are invariant under the 
action of the group S, of permutations between the n replicas. This implies that at least 
one of the solutions of (2.4) is invariant under S,, and so the first ansatz that is to be tried 
is certainly the symmetric one, which is given by 

&, =q&, t - t  and la = A .  (3.1) 

Introducing (3.1) into (2.2). and denoting the resulting freeenergy density by f ~ s  we have, 
after the manipulations described in [13], 

4.t.i + 2 p J q ? -  P J X  - -1 In (3.2) 
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where 

L d q .  i, i, x ,  z) := -BJ [(ir - q ) x 2  - ( Z z f i -  '.> x ]  (3.3) 

? := t / ( B J )  ,i := h/(BJ)  ir := a /J  

and we have introduced the notation 
+m 

G(z) := - dz e-"G(z). 

In a similar way, the stationary equations become 

( x ) ?  = 2i 

where 

(3.4) 

(3.5) 

(3.6) 

The low temperature limit of the symmehic solution, first studied by Diederich and 
Opper [5 ] ,  is particularly interesting because it allows us to prove analytically the existence 
of a second-order transition to a glassy phase, as we will show in the next section. 
Introducing the parameter 

the stationary equations (3.5) become 

(3.8) 

leading to f ~ s  = 2Ji(Z - 24). Figure I shows how q, f, i, and fm behave as functions 
of ir in this limit. We also give the approximate expressions of these parameters in two 
particularly interesting cases: the 'classical' regime (ir >> l), and the neighbourhood of the 
critical point ir, = I/&. 

In the former region, the equilibrium configurations become trivial, writh x:q U 1, Vi. 
The replica symmetric solution, which we will prove to be stable in this region, predicts 

(3.9) 

i. = -5 - JZi + U (e-") 
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./J */J 

Figure 1. Numerical solutions of lhe replica symmetric equations in the low temperature limit. 

and the free-energy density becomes 

fis = 4 (ri + + o (e-'*) . (3.10) 

Instead, the latter is the transition point to the glassy phase, as we will show below. In its 
neighbourhood we'have 

A A  q = - - -(7r - 2)(Z -(icy + 0 ((5 - &)Z) 

,? = -zrr(ri - 2 )  c + 2JZ7r(n - 2)(E - ii$ + 0 ((ii - &)Z) 
fis = n(Z - ri,) - &n(n - 2)(Z - ricy + 0 ((6 - &)2) , 

4 2  
7r 

(3.11) I = 5 - A7rC7r - 2)(Z - ri,) + 7r2(37r - 8)(Z - ZC)Z + 0 ((2 - &)2) 

- 

Finally, figure 2 shows the numerical results that we obtained for the order parameters 
q and t by solving equations (3.5) for different finite values of @. 

4. Instability of the symmetric solution 

In the preceding section we have shown that equations (2.4) admit a symmetric solution, but 
we must also check the Hessian of the free energy to determine whether our solution is a 
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Figure 2. Numerical solutions of the replica symmetric equations at finite temper ah^^ 

minimum o f f  or just a saddle-point. To find the eigenvalues of the Hessian we generalize 
the calculus made by de Almeida and Thouless [91 for the SK model of spin glass: let 

St,. = 0 
6t., = Si,, (4.1) 

Q., = (q + sqa)smy + t + sr,, with [ 
A, = 1. i SAa. 

If we denote the vector (6k. 647; 6t)  by 65 and we substitute (4.1) in (2.2) we obtain, 
after some tedious calculations 1131, that the second-order term in the expansion of f in 
term of 6E is given by -862 f = $6cT. Mag, where M is a real symmetric matrix with 
the following fourteen different types of elements: 

-2 - 
A := MdbJL = ( ( X 2 ) r  - (x)r ) 
B := Ma&si, = (m -a2) 

- 
c := M8k.64. = ((x3)z - (x2)z(X)z) 

((Xz)z(X)z - ( X 2 ) r ( X ) z )  D := MU.&, = 

E := M6qm6qa = -2 -k P 2 J 2  ((X4)z - (X2): )  
-- 

-- 
F := M s ~ J ~ ~  = - g 2 J z  ((9): - ( x ~ ) , ~ )  

G := Msb.sc, = - B J  ((X2)z(X)z - ( X ) ; ( ~ ) Z )  

H := M 6 ~ 6 r , ~  = -BJ  (E- ( X ) ? ( ~ ) Z )  

I := Msq.6rm, = B 2 J z  ( (X3)~(x)z  - ( X 2 ) , ( X ) : )  

- 

(4.2) 
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Furthermore, M has three different types of eigenvectors. 
(i) Symmetric eigenvectors of the type 

6( = (e,. . . , e; p ,  . . . , p ;  5 , .  . . , Z) 
(ii) I-asymmetry eigenvectors, with 

i foc=d [: otherwise 
PI i fcu=d 
po otherwise I 

1; otherwise 

[ :i otherwise 

U., = 

if a = &  or y = d  

8% = 

6t,, = 

(iii) 2-asymmetry eigenvectors, of the type 

if CY = 6 or CY = i; 
81, = 

(4.3) 

(4.4) 

p1 i f o r = d o r o l = p  
po otherwise (4.5) 

rZ 
6t,, = TO 

if  CY^ =di ;  or ay = j% 
if CY # 6, CY # F, y # 6 and y # i; 

8% = 

1 5, otherwise. 

The eigenvalues of M must be negative in order to ensure the stability of the symebic 
ansatz. The biggest eigenvalues associated with the families above comes from the 2- 
asymmetry eigenvectors, and is given by [13] 

pCr = +(K + K' - 2L + M) = -1 + /9'((x2)L - (X):)z.  (4.6) 

In the low temperature limit per can be easily computed, and is equal to 

2q - B 
8-q ficr = -. 

In particular, as figure 3 shows, pw becomes positive when 6 < 6,: 

kLcr = n(2 - 5) - .JZ l r (X  - 2)(B - $)2 + 0 ((8 - i i , ) Z )  . 

(4.7) 
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./s 

Figure 3. Critical eigenvalue at m temperature. The symmeuic solution becomes unstable 
when it is positive. 

5. Replica symmetry breaking 

Having proved the instability of the symmehic solution, we must now search for a more 
general ansatz to describe the system when ir < &. To obtain it, we will follow the 
guidelines of the hierarchical ansatz of spin glasses [10-12]. In this paper we only study 
the first step of the replica symmetry breaking, testing order parameter matrices of the type 

if Int 6) # Int ($) 
Q ~ Y  = t + r  $In!(:) = Int($) but a # y (5.1) I t  q + 1 + r if (I = y .  

This ansatz can be improved by iterating the breaking scheme in all the blocks introduced in 
the first step, but we will see that even a single breaking drastically improves the symmetric 
predictions. We recall that, in the limit n 4 Ot, the hierarchical parametrization can he 
written in terms of an order parameter function Q(x), defined in the interval x E [0, 11, 
which, at this point of symmetry breaking, is equal to 

In (5.2) we have omitted the diagonal term containing q (corresponding to Q(1)). because it 
involves the term in the Hamiltonian that contains a and it can always be treated separately. 
The introduction of the breaking parameters q and r changes the free-energy density: 

r 

(5.3) 
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U1 

Figure 4. Numerical solutions obtained for the product of the breaking parameters q and I al 
zero temperamre 

with 

&(q, r, r,  A,  x ,  z ,  z,) := - B J G  - q)x2  + (a, ,@E+ 22, - A) x .  (5.4) 

The stationary equations related to fH become 

1 = [ (~)(2,2,)Iz  

where 

(5.5) 

(5.6) 

Solving equations (5.5) numerically in the low temperature limit, we find that the product 
qr of the two breaking parameters remains finite in the ,3 + +cc limit, and that it becomes 
different from zero as soon as ir < Zc, as is shown in figure 4. 
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In figure 5 we show one of the results found in the numerical simulations that were 
performed on this model, and that we will describe in more detail elsewhere. The triangles 
represent the free-energy density obtained from the simulations at zero temperature, the full 
curve corresponds to the replica symmetric prediction, and the broken curve illustrates the 
broken symmetiy results. Figure 5 clearly shows how the first step of the replica symmetry 
breaking improves the symmehic predictions, even if it fails when ;Z goes to zero. 

Figue 5. Improvement led by the one-step replica s y m e m  broken solution in the prediction 
for the free energy at zero temperature. 

To conclude the study of the replica symmetry broken solution we will now show that, 
in the low temperature limit, goes to zero as O(B-'), so that the breaking parameter r 
scales as t and 1 do, i.e. that r = ,G with 7 finite as T goes to zero. We will prove this 
result near the critical value of U where we have a better analytic control. To this end, we 
push our expansion off  to the third order in 6A, bSq, 6t, obtaining 

fR' + f ( 3 )  
- Bf = -j3f~s + lim =-to+ n (5.7) 

The second-order term f (*) was studied in the preceding section; considering the third-order 
term as a function of the order parameter function Q(x) .  and neglecting higher-order terms 
in n, the stationary equation 

that must be verified Vx E [O, 11, can be given in the form [131 
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where 

dQ 
dr 

Q ( x )  := -. (5.10) 

One can take the derivative of this expression with respect to x to obtain a necessary 
condition for the equilibrium: 

Q ( x )  = 0 

(5.11) 

This is exactly what we were looking for: the order parameter function Q ( x )  must be 
a constant in all x E [O, 11, except for 

(5.12) 

where a jump can happen. Note that in king spin glasses with two-spin interactions no 
solution of this type. can be found, while a similar phenomenon happens in the Pons model 
with p components, when p > 4. 

The integrals in (5.12) can be computed in the low temperature limit, leading to [I31 

where E is defined in (3.3, and the numerical constant CN can be easily evaluated, and is 
equal to 0.0167066.. . . Equation (5.13) shows that the scaling behaviour of q is precisely 
q = U(,!?’) when 8 + +co. 

6. Conelusions 

We have shown that in the replicant model replica symmetry is broken. The predictions 
based on one-step replica symmetry breaking are in better agreement with the numerical 
data than those coming from exact symmetry, but in this case the one-step replica symmetry 
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breaking gives only a partial improvement of the theoretical predictions in the limit of very 
small a .  It would be rather interesting to obtain the results from full replica symmetry 
breaking in this region. This task should not be impossible using the techniques of [13]. 

The replica symmetric phase, which at zero temperature is stable only for ir 2 rlc = 
&/2, is characterized as usual by the presence of only one equilibrium configuration. 
When the evolution of the system is stndied in this phase, the final configuration does not 
depend either on the starting point or on the details of the evolution. because no free-energy 
barriers break the ergodicity of the system, and there is no degeneracy of the minima of the 
energy. 

In conblast, in the disordered phase, ergodicity is broken, a huge number of metastable 
equilibrium configurations appear, and the evolution of the system is determined by the 
singularities of the free-energy surface in the phase space. Furthermore, accurate numerical 
simulations can give more detailed information about this phase: even when many metastable 
states appear. the state with minimum free energy always has a wider attraction basin than 
the upper states. Furthermore, when the number of minima of the energy becomes very great 
(i.e. for very small a) ,  the surviving probability of one single species depend on the starting 
point of the evolution. The most surprising feature is that this dependence is extremely low 
until we reach values of 2 of the order of lO-'Z,. Finally, the ground-state energy gave 
us a quantitative measure of how the replica symmetry breaking improves our theoretical 
predictions: a single step breaking almost halves the errors of the symmetric results (see 
figure 5). 
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